Two Upper Bounds on the Chromatic Number

نویسندگان

  • María Soto
  • André Rossi
  • Marc Sevaux
چکیده

Processor cache memory management is a challenging issue as it deeply impact performances and power consumption of electronic devices. It has been shown that allocating data structures to memory for a given application (as MPEG encoding, filtering or any other signal processing application) can be modeled as a minimum k-weighted graph coloring problem, on the so-called conflict graph. The graph coloring problem plays an important role as a particular case of the minimum weighted graph coloring problem, and providing upper bounds on the minimum number of colors to be used is an important issue for addressing these memory allocation problems. A coloring of graph G = (X,U) is a function F : X → N∗; where each node in X is allocated an integer value that is called a color. A proper coloring satisfies F (u) 6= F (v) for all (u, v) ∈ U [2]. The chromatic number of G, denoted by χ(G), is the smallest number of colors involved in any proper coloring. Determining χ(G) for any graphG is aNP-hard problem [1] however there are some well known particular cases: χ(G) = 1 if and only if G is a totally disconnected graph, χ(G) = 2 for any exactly bipartite graphs (including trees and forests) and χ(G) = |X| if G is complete.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

Chromatic Numbers of Hyperbolic Surfaces

Abstract. This article is about chromatic numbers of hyperbolic surfaces. For a metric space, the d-chromatic number is the minimum number of colors needed to color the points of the space so that any two points at distance d are of a different color. We prove upper bounds on the d-chromatic number of any hyperbolic surface which only depend on d. In another direction, we investigate chromatic ...

متن کامل

Computing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers

The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...

متن کامل

Some results on incidence coloring, star arboricity and domination number

Two inequalities are established connecting the graph invariants of incidence chromatic number, star arboricity and domination number. Using these, upper and lower bounds are deduced for the incidence chromatic number of a graph and further reductions are made to the upper bound for a planar graph. It is shown that cubic graphs with orders not divisible by four are not 4-incidence colorable. Sh...

متن کامل

Game chromatic number of graphs

y Abstract We show that if a graph has acyclic chromatic number k, then its game chromatic number is at most k(k + 1). By applying the known upper bounds for the acyclic chromatic numbers of various classes of graphs, we obtain upper bounds for the game chromatic number of these classes of graphs. In particular, since a planar graph has acyclic chromatic number at most 5, we conclude that the g...

متن کامل

On Sum Coloring of Graphs with Parallel Genetic Algorithms

Chromatic number, chromatic sum and chromatic sum number are important graph coloring characteristics. The paper proves that a parallel metaheuristic like the parallel genetic algorithm (PGA) can be efficiently used for computing approximate sum colorings and finding upper bounds for chromatic sums and chromatic sum numbers for hard– to–color graphs. Suboptimal sum coloring with PGA gives usual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009